
Analysis of Different Techniques Used For Fault
Tolerance

Jasbir Kaur, Supriya Kinger

Department of Computer Science and Engineering, SGGSWU, Fatehgarh Sahib, India,
Punjab (140406)

Abstract- Cloud computing is a synonym for distributed
computing over a network and means the ability to run a
program on many connected computers at the same time. This
phase is also more commonly used to refer to network based
services which appear to be provided by real server hardware,
which in fact are served up by virtual hardware, simulated by
software running on one or more real machines. This paper is
based on the survey of types of faults-tolerance and different
types of fault-tolerance techniques. There are several methods
used to avoid the faults before and after it occur.

General Terms – Cloud Computing, Fault Tolerance,
Redundancy, Check pointing, Virtual Machines

1. INTRODUCTION
Cloud Computing is a growing research field in these days
and it is the next big revolution in computer networks and
web provisioning.

1.1 Definition of Cloud Computing
Cloud computing or something being within the cloud is an
expression used to describe a variety of computing
concepts that involve a large number of computers
connected through a real time communication network such
as the internet. In science, Cloud computing is a synonym
for distributed computing over a network and means the
ability to run a program on many connected computers at
the same time. The phrase is also more commonly used to
refer to network-based services which appear to be
provided by real server hardware, which in fact are served
up by virtual hardware, simulated by software running on
one or more real machines[1]. Such virtual servers do not
physically exist and can therefore be moved around and
scaled up(or down) on the fly without affecting the end user
– arguably, rather like a cloud. The popularity of the term
can be attributed to its use in marketing to sell hosted
services in the sense of application service provisioning
that run client server software on a remote location.

According to NIST “Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing
resources(e.g., networks, servers, storage, applications and
services) that can be rapidly provisioned and released with
minimal management effort or service provider
interaction “[2].

The cloud model is composed of five essential
characteristics, three service models and four deployment
models [3].

1.1.1 Essential Characteristics
 On-Demand self Service

A consumer can unilaterally provision computing
capabilities such as server time and network storage as
needed automatically without requiring human
interaction with each service provider.

 Broad Network Access
Capabilities are available over the network and
accessed through standard mechanisms that promote
use by heterogeneous thin or thick client platforms
(e.g.-mobile phones, tablets, laptops and workstations).

 Resource Pooling
The provider’s computing resources are pooled to
serve multiple consumers using a multi-tenant model
with different physical and virtual resources
dynamically assigned and re-assigned according to
consumer demand. There is a sense of location
independence in that the customer generally has no
control or knowledge over the exact location of the
specify location at a higher level of abstraction (e.g.
country, state or datacenter). Examples of resources
include storage processing, memory and network
bandwidth.

 Rapid Elasticity
Capabilities can be elastically provisioned and released
in some cases automatically, to scale rapidly outward
and inward commensurate with demand. To the
consumer, the capabilities available for provisioning
often appear to be unlimited and can be appropriated in
any quantity at any time.

 Measured Service
Cloud systems automatically control and optimize
resource use by leveraging a metering capability at
some level of abstraction appropriate to the type of
service (e.g. storage, processing, bandwidth and active
user accounts). Resource usage can be monitored,
controlled and reported, providing transparency for
both the provider and consumer of the utilized service.

1.1.2 Service Models
 Software as a Service (SaaS)

The capability provided to the consumer is to use the
providers applications running on a cloud
infrastructure. The applications are accessible from
various client devices through either a thin client
interface, such as a web browser (e.g. web based e-
mail), or a program interface. The consumer does not
manage or control the underlying clud infrastructure
including network servers, operating systems, storage
or even individual application capabilities with the

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4086-4090

www.ijcsit.com 4086

possible exception of limited user specific
configuration settings.

 Platform as a Service (PaaS)
The capability provided to the consumer is to deploy
onto the cloud infrastructure consumer-created or
acquired applications created using programming
languages, libraries, services and tools supported by
the provider. The consumer does not manage or control
the underlying cloud infrastructure including network
servers, operating systems or storage but has control
over the deployed applications and possibly
configuration settings for the application hosting
environment.

 Infrastructure as a Service
The capability provided to the consumer is to provision
processing, storage, networks and other fundamental
computing resources where the consumer is able to
deploy and run arbitrary software which can include
operating systems and applications. The consumer
does not manage or control the underlying cloud
infrastructure but has control over operating systems,
storage and deployed applications and possibly limited
control of select networking components (e.g. host
firewalls).

1.1.3 Deployment Models
 Private Cloud

The cloud infrastructure is provisioned for exclusive
use by single organization comprising multiple
consumers (e.g. business units). It may be owned,
managed and operated by the organization, a third
party, or some combination of them, and it may exist
on or off premises.

 Community Cloud
The cloud infrastructure is provisioned for exclusive
use by a specific community of consumers from
organizations that have shared concerns (e.g. mission,
security requirements, policy and compliance
considerations). It may be owned, managed and
operated by one or more of the organizations in the
community, a third party or some combination of them
and it may exist on or off premises.

 Public Cloud
The cloud infrastructure is provisioned for open use by
the general public. It may be owned, managed and
operated by a business, academic or government
organization or some combination of them. It exists on
the premises of the cloud provider.

 Hybrid Cloud
The cloud infrastructure is a composition of two or
more distinct cloud infrastructures (private, community
and public) that remain unique entities, but are bound
together by standardized or proprietary technology that
enables data and application portability (e.g. cloud
bursting for load balancing between clouds).

1.2 Advantages of Cloud Computing
 Cloud computing do not need high quality equipment

for user and easy to use.

 Cloud computing provides dependable and secure data
storage center. No need to worry about data loss or
virus.

 Cloud computing can realize data sharing between
different equipments.

 Cloud provides nearly infinite possibility for users to
use internet.

1.3 Disadvantages of Cloud Computing
 The production or service of cloud computing is not

stable and believable.
 The most worrying question is the privacy of cloud

computing.
 If we use cloud computing without technical layout,

that is very dangerous.

2. FAULT –TOLERANCE IN CLOUD COMPUTING
Fault-tolerant computing is the art and science of building
computing systems that continue to operate satisfactorily in
the presence of faults. A fault tolerant system may be able
to tolerate one or more fault types including- transient,
intermittent or permanent hardware faults, software and
design errors, operator errors, or externally induced upsets
or physical damage[4]. An extensive methodology has been
developed – most dealing with random hardware faults,
while a smaller number deal with software, design and
operator faults to varying degrees. A large amount of
supporting research has been done and reported. Fig. 1
shows the relationships among faults, error and failure.

Fault tolerance and dependable systems research covers a
wide spectrum of applications ranging across embedded
real-time systems, commercial transaction systems,
transportation systems, and military/space systems. The
supporting research includes systems architecture, design
techniques, coding theory, testing, validation, proof of
correctness, modeling, software reliability, operating
systems, parallel processing, and real time processing.
These areas often involve widely diverse core expertise
ranging from formal logic, mathematics of stochastic
modeling, graph theory, hardware design and software
engineering.

2.1 Types of Fault-Tolerance
2.1.1 Hardware Fault-Tolerance
The majority of fault-tolerant designs have been directed
toward building computers that automatically recover from
random faults occurring in hardware components. The
techniques employed to do this generally involve
partitioning a computing system into modules that act as
fault-containment regions. Each module is backed up with
protective redundancy so that, if the module fails, other can

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4086-4090

www.ijcsit.com 4087

assume its function[6,7]. Two general approaches to
hardware fault recovery have been used: 1) fault masking,
and 2) dynamic recovery.
 Fault Masking
 Fault masking is a structural redundancy technique that

completely masks faults within a set of redundant
modules. A number of identical modules execute the
same functions, and their outputs are voted to remove
errors created by a faulty module. Triple modular
redundancy (TMR) is a commonly used form of fault
masking in which the circuitry is triplicated and voted.
The voting circuitry can also be triplicated so that
individual voter failures can also be corrected by the
voting process. A TMR system fails whenever two
modules in a redundant triplet create errors so that the
vote is no longer valid. Hybrid redundancy is an
extension of TMR in which the triplicated modules are
backed up with additional spares, which are used to
replace faulty modules – allowing more faults to be
tolerated. Voted systems require more than three times
as much hardware as non redundant systems, but they
have the advantage that computations can continue
without interruption when a fault occurs, allowing
existing operating system to be used[7].

 Dynamic Recovery
 Dynamic recovery is required when only one copy of

computation is running at a time (or in some cases two
unchecked copies), and it involves automated self-
repair. As in fault masking, the computing system is
partitioned into modules backed up by spares as
protective redundancy. In the case of dynamic
recovery however, special mechanisms are required to
detect faults in the modules, switch out a faulty
module, switch in a spare, and instigate those software
actions (rollback, initialization, retry, restart) necessary
to restore and continue the computation. In single
computers special hardware is required along with
software to do this, while in multicomputer the
function is often managed by the other processors[7].
Dynamic recovery is more hardware-efficient than
voted systems, and it is therefore the approach of
choice in resource-constrained (e.g., low power)
systems, and especially in high computing must be
maximized. Its advantage is that computational delays
occur during fault recovery, fault coverage is often
lower, and specialized operating system may be
required.

2.1.2 Software Fault-Tolerance
Efforts to attain software that can tolerate software design
faults (programming errors) made use of static and dynamic
redundancy approaches similar to those used for hardware
faults. One such approach, N-version programming, uses
static redundancy in the form of independently written
programs that perform the same functions, and their outputs
are voted at special checkpoints. Another approach called
design diversity combines hardware and software fault-
tolerance by implementing a fault-tolerant computer system
using different hardware and software in redundant
channels [7].

3. TECHNIQUES FOR FAULT TOLERANCE
In cloud computing there are two types of fault tolerance:

 Reactive fault tolerance
 Proactive fault tolerance

3.1 Reactive fault tolerance
Reactive fault tolerance means to remove the fault after it
occurs. Basically reactive fault tolerance policies reduce the
effect of failures on application execution when the failure
effectively occurs. There are various techniques which are
based on these policies like Checkpoint/Restart, Replay and
Retry and so on[5].
 Checkpointing/Restart: When a task fails, it is

allowed to be restarted from recently checked pointed
state rather than from the beginning. It is an efficient
task level fault tolerance technique for long running
applications.

 Replication: Various task replicas are run on different
resources, for the execution to succeed till the entire
replicated task is not crashed. It can be implemented
using tools like Hadoop and AmazonEc2 etc.

 Job Migration: During failure of any task, It can be
migrated to another machine. This technique can be
implemented by using HAProxy.

3.1.1 Techniques used for Reactive Fault-Tolerance are:

 FTM Architecture
 MPI Architecture

3.1.1.1 FTM (Fault Tolerance Manager) Architecture
FTM is built to work on top of hypervisor, spanning all the
nodes and transversing the abstraction layers of the Cloud
to transparently tolerate failures among the processing
nodes[4]. Fig. 2 illustrates the architecture of FTM which
can primarily be viewed as an assemblage of several Web
service components, each with a specific functionality. A
brief description of the functionality of all the components
along with the rationale behind their inclusion in the
framework is given below.

In this architecture Replication Manager replicates users
applications such that a redundant copy of the application is
available after failure happens. Fault Detection/Prediction
Manager is used to detect replica failures. Fault detection

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4086-4090

www.ijcsit.com 4088

services detect the faults immediately after their occurrence
and send a notification about the faulty replica to the FTM
Kernel to invoke services from the Fault Masking Manager
and Recovery Manager. Fault Masking Manager meets
high availability demands by recovering or replacing the
failed components in the background while the
application’s execution remains uninterrupted in another
instance “replica”. A collection of such algorithms that
“mask” the occurrence of failures and prevent the faults
from resulting into errors is included in this component[4].
Recovery Manager includes all the mechanisms that
resumes error prone nodes to a normal operational mode.
Messaging Monitor offers the necessary communication
infrastructure, It exchange the message among replicas of a
replica group and also provide inter-component
communication within the framework. Client/Admin
interface act as an interface between the end user and FTM.
FTMKernel is the central computing component of Fault
Tolerance Manager which manages all the reliability
mechanisms in the framework. Resource Manager
maintains a database which include logging information
about the machines in the cloud and provides an abstract,
simple representation of working state of resources in the
form of graph.

3.1.1.2 MPI (Message Passing Interface) Architecture
MPI has become the de facto standard for parallel
applications programming[7]. It has a modular, layered
architecture which separates the implementation of the high
level protocols and functions from the low level
mechanisms used for interprocess communication and
process management. This is very important because it
makes it possible to build a new implementation by
rewriting only the functions at the lowest level[9]. The
LAM layer provides a framework and run-time
environment upon which the MPI layer executes. The MPI
layer provides the MPI interface and an infrastructure for
direct, process-to-process communication. The MPI library
consists of two layers. As shown in Fig.4 the upper layer is
independent of the communication sub-system (i.e., MPI
function calls and accounting utility functions).

The lower layer consists of a modular framework for
collections of Systems Services Interfaces called SSI. One
such collection is the MPI Request between the MPI peer
processes. Another is the checkpoint/restart (CR), which
provides an interface to the back-end checkpointing system
that does the actual checkpointing and restart functionality.
At the start of execution of an MPI job, the CR SSI
determines whether checkpoint/restart support was
requested, and if so, the blcr module is selected to run. To
support checkpointing, an RPI module must have the
ability to generically prepare for checkpoint, continue after
checkpoint, and restore from checkpoint. A checkpointable
RPI module must therefore provide callback functions to
perform this functionality.

3.2 Proactive fault tolerance
It refers to avoiding failures, errors and faults by predicting
them in advance. Some of the techniques which are based
on these policies are preemptive migration, software
rejuvenation etc[5].

 Proactive Fault Tolerance using self healing:
When multiple instances of an application are
running on multiple virtual machines, it
automatically handles failure of application
instances.

 Proactive Fault Tolerance using preemptive
Migration: Preemptive Migration relies on a
feedback-loop control mechanism where
application is constantly monitored and analyzed.

3.2.1 Technique used for proactive fault tolerance is:
MapReduce Fault Tolerance
MapReduce has been gaining popularity and it has been
used at Google extensively to process 20 petabytes of data
per day[8]. Yahoo developed its open-source
implementation, Hadoop, which is also used in Facebook
for production jobs including data import, hourly reports,
etc. As shown in fig.4, in MapReduce, input data is split
into a number of blocks, each of which is processed by a
map task. The intermediate data files produced by map
tasks are shuffled to reduce tasks, which generate final data
output.

Fig.4 MapReduce Architecture[10]

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4086-4090

www.ijcsit.com 4089

MapReduce handles failures through re-execution. If a
machine fails, MapReduce reruns the failed tasks on other
machines. In the effect of a single machine failure on the
runtime of a Hadoop job (i.e., a two-stage job) is studied
and it is found out to cause a 50% increase in completion
time.

4. CONCLUSION AND FUTURE SCOPE
Various different fault-tolerance techniques have been
discussed in this paper and concluded that there is need of a
more efficient and reliable technique that is also cheaper
than the existing techniques. Future research works can
explore more on MPI architecture in to present a reliable
and less costly technique for fault-tolerance.

REFERENCES
[1] Shuai Zhang, Shufen Zhang, Xuebin Chen, Xuizhen Huo, “Cloud

Computing Research and Development Trend” © 2010 IEEE, DOI
10.1109/ICFN.2010.58.

[2] Peter Mell, Timothy Grance, “NIST Definition of Cloud
Computing”, Sept 2011, National Institute of Standards and
technology, Gaithersburg, MD 20899-8930.

[3] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen and Zhenghu
Gong, “The Characterstics of Cloud Computing”, © 2010 IEEE,
DOI 10.1109/ICPPW.2010.45

[4] Ravi Jhawar, Vincenzo Piuri, Marco Santambrogio, “ A
Comprehensive Conceptual System-Level Approach to Fault
Tolerance in Cloud Computing”© 2012 IEEE, DOI
10.1109/SysCon.2012.6189503.

[5] Amritpal Singh, Supriya Kinger, “An Efficient Fault Tolerance
Mechanism Based on Moving Averages Algorithm” © 2013,
IJARCSSE, ISSN: 2277 128X.

[6] http://en.wikipedia.org/wiki/Fault-tolerant_computer_system
[7] http://www.cs.ucla.edu/~rennels/article98.pdf
[8] Qin Zheng, “Improving MapReduce Fault Tolerance in the Cloud” ©

2010 IEEE.
[9] Ekype Okorafor, “A Fault-tolerant High Performance Cloud strategy

for Scientific Computing” ©2011 IEEE, DOI
10.1109/IPDPS.2011.306.

[10] https://www.google.co.in/?gfe_rd=cr&ei=WvM8U5_PL9j
BuASr6oHACQ#q=Mapreduce + architecture.

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4086-4090

www.ijcsit.com 4090

